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ABSTRACT 

Drivetrain related failures are one of the main concerns for wind turbines (WTs) operation. They are 

responsible for increased downtimes and associated high O&M costs. Condition monitoring systems based 

on vibration measurements are the standard in WT applications, but they still rely on vibration analysts and 

complex frequency-domain analysis to provide diagnostic results. In the present paper, we demonstrate a 

new diagnosis solution, based on deep learning and direct time-domain feature extraction. The developed 

tool enables identification of time-series anomalies, indicating the failure warning by surpassing specific 

thresholds over the reconstruction error of an autoencoder network. Many advantages are demonstrated, 

including the failure diagnosis long before the traditional FFT and Envelope methods. Effectiveness of the 

method is proven on a WTs CMS vibration database. 

 

Keywords:  

condition monitoring; deep learning; vibration analysis; WT diagnostics; autoencoder. 

1. INTRODUCTION 

Wind energy has increasingly been incorporated as a major power source in supplying worldwide 

energy demand, becoming one of the most important and profitable renewable energy sources. Indeed, 

the world has seen its installed wind power capacity passes from 198 GW in 2010 to 906 GW towards the 

end of 2022, consisting in a nearly exponential growth of power capacity, as illustrated in Figure 1. On the 

other hand, the urgent need for energy transition is expected to motivate even more the employ of wind 

power over many countries of the globe. According to the Intergovernmental Panel on Climate Change 

(IPCC), organ of the United Nations (UN) for climate changes matters, the limitation of global temperature 

increase to 2ºC in 2100 is pointed as the superior threshold to ensure tolerable impacts for the ecosystems. 

This was the limit adopted by the Paris Agreement, in the end of 2015, signed by 192 countries.  
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Figure 1: Installed wind power capacity approaching an exponential growth trend, onshore and offshore 

numbers. Source: Adapted by the author from GWEC (2023). 

 

 

In Brazil, the growth of wind power in the last two decades has proven the potential of including 

wind energy in the Brazilian energy matrix. The national capacity has increased from the incipient number 

of 0.22 GW in 2005 to the current 21 GW of wind power production. Brazil is today the 7th country in wind 

power installed capacity and the projections are of constant increase over the next years (EPBR, 2022). 

On the other hand, in order to sustain this impulse in wind energy employment, several challenges remain. 

One of the main reside in the operation and maintenance (O&M) costs, which can attain 30% of the overall 

wind project cost (NREL, 2020). In fact, wind turbines (WTs) designed for a 20-year lifetime often suffer 

varied premature failures due to the harsh operational conditions, especially regarding the variable 

mechanical load (Meng et al., 2019). 

Analyzing the failure breakdown, it is clearly demonstrated in many studies that the gearbox and 

generator failures are the responsible for causing the longest downtime and thus are associated with the 

highest cost per failure (Dao et al., 2019; Liu & Zhang, 2020). Further, it is noteworthy that bearings are by 

far the primarily responsible for inducing these drivetrain failures, accounting for, e.g., 76% of the gearbox 

failures. For the sake of comparison, only 17% of gearbox failures comes from gears and the other 7% from 

miscellaneous causes (Peeters et al., 2018). It remains evident the importance of avoiding bearing failures, 

given the high downtimes and costs of drivetrain replacements. The most relevant method to prevent the 

financial and production losses caused by undesired bearing failures is based on condition monitoring 

systems (CMS). Although different monitoring variables could be used, the solution largely implemented in 

the commercial WTs relies on vibration monitoring. Compared to other possible CMSs, such as oil analysis 

and temperature monitoring, vibration signals are simpler to acquire, provide earlier failure detections and 
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enable analysis in time, frequency or time-frequency domains (Wymore et al., 2015). Acoustic emissions 

are comparable to vibration measurement in ability of failure observation, but are harsh to gather and 

preprocess, especially in noisy environments (Scheeren et al., 2022). However, regardless of vibration 

CMS being present in the majority of WTs, many difficulties in the diagnosis of drivetrain failures still arise. 

First, the WT has components working in different frequency ranges, which appear aggregated in the time 

signal. Second, the essentially random wind loading imposed to the WT structure propagates through the 

drivetrain, introducing complex vibration patterns in the measured vibration waveform. Third, the analysis 

and diagnosis of failures using the CMS vibration is still highly dependent on human experts, which uses 

various signal processing techniques and engineering judgment to indicate failure occurrence.  

In order to overcome these issues and improve WT diagnosis, we have been developing several 

failure detection algorithms, mainly based on machine learning methods. Machine learning (ML) is an 

artificial intelligence (AI) branch that provides computers with the ability to learn complex relations from 

data, capturing non-linear and unmodeled dynamics between any number of variables. Thus, ML algorithms 

are a natural choice for WT diagnosis. Deep learning (DL) is a subfield of machine learning specifically 

dedicated to algorithms emulating the human brain structure, i.e., neural networks (NNs). Usually, deep 

learning refers to NNs composed of three or more hidden layers (Deisenroth et al., 2020). The subfields of 

artificial intelligence are shown in Figure 2.  

 

Figure 2: Artificial Intelligence classification. Source: IBM (2023). 

 

 

Machine and deep learning have been increasingly studied to execute diagnostics and prognostics 

of machinery, including WTs, and have shown promising potential. However, very few papers have 

addressed their application in real turbine data. Therefore, this paper has the following objectives: present 

one of our diagnostic solutions based on deep learning, using a type of NNs known as autoencoders; apply  
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the solution in commercial WTs; compare our solution with traditional diagnostic of drivetrain failures, 

showing it can forecast premature failures in advance to conventional approaches. 

2. ML AND DL IN DIAGNOSIS AND PROGNOSIS USING VIBRATION DATA 

A large amount of research has been executed in AI for evaluating the health of machines, systems 

or structures (Berghout & Benbouzid, 2022). This is commonly termed as Prognostics and Health 

Management (PHM). Various PHM papers rely on laboratory test data which not necessarily corresponds 

to real field conditions. Nevertheless, they present useful methods that worth consideration and that can be 

combined and adapted for use in WTs on the field. This paper presents a diagnostic solution which, among 

other considerations, is also a product from literature survey, and this is why a brief review follows. 

PHM techniques for WTs are essentially derived from methods applied to gears and bearing in 

general rotating machinery (Leite et al., 2018). Older industries such as hydraulic and steam power have a 

long story of condition monitoring of their components, and therefore they possess very well-established 

procedures to evaluate equipment’s health. Besides, they have smoother operational conditions when 

compared to WTs, what makes easier the application of general rules, while in the wind industry the solution 

must be customized. This is another reason for that ML and DL approaches fit so well in WTs analysis, 

since they are nonlinear by nature. With the increase in computational power and the advent of big data, 

the last decade has seen an impressive increase in ML and DL research, including using collected vibration 

data (Do & Söffker, 2021). 

One of the first attempts was carried out by Kankar et al. (2011), where the raw vibration data is 

processed through wavelets. Authors compare the performance of Support Vector Machines (SVMs) with 

Self-Organizing Maps (SOMs) for bearing defect classification. In the work of Malhi et al. (2011), wavelets 

are also used, but this time for establishing the remaining useful life (RUL) of bearings using recurrent 

neural networks (RNNs). A specific application of ML for WTs is first presented by Chen et al. (2013), which 

presents a neuro-fuzzy method to evaluate pitch faults using the power signal, but without vibration data. 

The vibration analysis of WTs appears in Zimroz et al. (2014), where the authors propose the use of 

statistical measures, such as signal RMS, considering the non-stationarity of WT operations. The work aims 

to improve the recommendations of the german standard VDI 3834 (VDI, 2009). This was the first norm to 

preview limits for WT vibrations, classifying different zones of attention for vibration RMS levels. Afterwards, 

in 2015, the classical ISO 10816 has issued its Part 21, containing recommendations for WT vibration 

analysis. However, these standards are rather prescriptive and general, and their use has limitations. In 

2013, Bechhoefer et al. (2013) have made a complete analysis of the Fourier Fast Transform (FFT) as 

applied to vibration signal monitoring. FFT is largely used in the posterior PHM papers and in WT condition 

monitoring, as in Verstraete et al. (2017). Other processing techniques were also used for vibration data, 

such as Hilbert-Huang transform (Soualhi et al., 2015), wavelet packet transform (L. Song et al., 2018) and 

empirical mode decomposition (Wu, Jiang, et al., 2019). Nevertheless, FFT with envelope analysis is 

consolidated as the standard tool for WT vibration analysis in the wind industry. 
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 Most recent works have focused on DL methods. In the work of Guo et al. (2017), a health indicator 

(HI) is constructed based on the training of a RNN using vibration time and time-frequency features, which 

are ranked by their monotonicity. Authors test their tool in a WT bearing prognosis, achieving a suitable 

degradation trend, compatible with the field data. Li et al. (2019) have estimated the RUL of bearings with 

a convolutional neural network (CNN), using as input the short-time Fourier transform (STFT) of the 

vibration signal, using multi-scale vibration signal. Indeed, the STFT corresponds to the Fourier transform 

in reduced time window, such that, for every vibration data sample, a 2-D matrix is output. In this context, 

Wu et al. (2019) propose the construction of a HI based on the bathtub curve, to model the bearing 

degradation and estimate the RUL. Pecht et al. (2020) employ CNNs with residual blocks of deep NNs, 

whose input is given by wavelet packet transform. The focus is the classification of bearings and gear 

failures using vibration data, into 9 different classes. The three classical bearing failures are considered, 

i.e., inner race, outer race and cage faults. Also, Zhao et al. (2020) have conducted a benchmark analysis 

of various DL diagnostic methods, where the autoencoder is pointed as one of the promising tools. 

Autoencoders are also present in the research paper of (Wang et al., 2021), in which the latent space is 

used for estimating the RUL. The previous papers are focused towards diagnostic and prognostic using 

vibration signals from laboratory data, mainly from the largely known IEEE-PRONOSTIA platform and the 

CWRU or MFPT datasets (CWRU, 2013; MFPT, 2016; Nectoux et al., 2012). More extensive reviews 

regarding DL-based failure detection are presented, e.g., in Zhang et al. (2020) and Rezamand et al. (2020).  

Literature review shows that papers focused in providing diagnostic solutions for real WT data is 

scarce, since there is a necessity of a lot of historical data to implement the developed solutions. This could 

be executed in a second phase of the CMS implementation, when the operator could use its own historical 

data to implement estimation of RUL and classification of failure types. First, it is necessary to provide the 

operator with a tool to identify the WT bearing failures using ML and DL cluster analysis to identify 

anomalies in the vibration data, and notify the operator to proceed with the condition-based maintenance 

(CBM). Two papers in this direction are the ones of Ben Ali et al. (2018) and J. Guo et al. (2018). The 

present paper is aligned with this maintenance philosophy, building a solution applied in real WT CMS 

vibration data. The developed tool allows the diagnostic of bearing failures, using a deep learning 

autoencoder and time-signal feature processing, without the need of spectral or envelope analysis, and not 

depending on direct human intervention. 

3. METHODOLOGY 

3.1 UTILIZED WT CMS DATASET 

The applied dataset corresponds to vibration data collected from WT CMSs installed in 18 WTs of 

2.5 MW rated capacity over a 5-year period. Data has been provided by Luleå University of Technology 

(LTU) and is referenced in the work of Strömbergsson et al. (2020). Each gearbox of the WTs is 

instrumented with 4 accelerometers, mounted in different positions. The gearboxes have three gear stages 

and two planetary stages, followed by a helical gear stage. The accelerometers are located as follows: one 

accelerometer at the ring gear of the 1st planetary stage; one accelerometer at the gearbox housing just 
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beside the ring gear of the 2nd planetary stage; and two accelerometers (radial and axial) at the housing 

near to the output shaft. Figure 3 illustrates a WT gearbox with the installed accelerometers. 

Figure 3: Vibration monitored gearbox with installed accelerometers. Source: (Strömbergsson et al., 2020). 

 

 

The vibration data has been collected every 24 hours. The accelerometers mounted on the 

planetary stage had a sample rate of 2.56 kHz and a sample duration of 6.4 s. For the accelerometers 

mounted on the output shaft, these values were of 12.8 kHz and 1.28 s, where the highest sample frequency 

is needed due to the higher rotational speed in the output of gearboxes. 

3.2 ANOMALY DETECTION USING AUTOENCODERS 

Autoencoders (AEs) are a special type of ANNs, whose objective is to reconstruct in the output the 

same data of the input. In this sense, autoencoders are considered an unsupervised DL method, since the 

training labels are the input data. The AE is the result of two sequential networks: an encoder, which learns 

a compressed representation of input data, codifying information to what is called latent space; and a 

decoder, which obtains the output from the latent space. An example of autoencoder structure is shown in 

Figure 4.  

Figure 4: Autoencoder with sequential encoder and decoder. Source: (Y. Song et al., 2021) 
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Mathematically, each encoder layer takes the input 𝑥 and transforms it to a hidden representation 

ℎ as: 

                                       ℎ = 𝜙(𝑊 ∙ 𝑥 + 𝑏)         (1) 

 

 where 𝜙 represents a nonlinear activation function, and 𝑊 and 𝑏 are the layer weight and bias, 

respectively. In this paper, ReLU function will be used as activation for both encoder and decoder layers 

(see Sec. 3.3.1). The procedure in Eq. 1 generates the latent space and the coded representation. After 

that, the decoder generates the output 𝑥′ by passing the data through its several layers, with the same 

mathematical process, this time acting over the hidden variables: 

 

                                     𝑥′ = 𝜙(𝑊′ ∙ ℎ + 𝑏′)         (2) 

 

 

where 𝑊′ and 𝑏′ are the decoder layer weight and bias. The mean squared error 𝐿𝑀𝑆𝐸 is normally 

used as the loss function, as in Eq. 3: 

 

                                𝐿𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖′)

2𝑁
𝑖=1          (3) 

 

 

where 𝑥𝑖 and 𝑥𝑖′ are generic samples and 𝑁 is the total number of samples. In the present paper, 

the samples consist in vibration time-series collected in each logged measurement of the CMS.  

 

One of the possible uses of AEs is to detect anomalies, based on their reconstruction error (Finke 

et al., 2021). This process happens when the AEs are trained exclusively with vibration data from healthy 

machine conditions. In this case, if a non-healthy or anomalous time-series is passed through the network, 

the AEs will present a large reconstruction error, indicating the anomaly. The procedure has a lot of 

advantages: it does not require the definition of the defect frequencies for each specific component and 

failure mode; it does not require feature extraction in the frequency domain; it does not require searching 
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for specific frequencies or sidebands, which is subjected to human errors.  The next section details our AE-

based failure diagnosis. 

3.3 DEVELOPED TOOL FOR DRIVETRAIN FAILURE DIAGNOSIS 

3.3.1 Proposed architecture of the autoencoder 

The autoencoder used in our diagnosis tool is composed by 11 layers in the encoder and by the 

same number of layers in the decoder, since both networks must be symmetric. It is designed to process 

the vibration signal in time-domain, i.e., employing 1-D sequence data. Indeed, the input of the AE receives 

sequences of length 4, corresponding to the set of selected time-series features, which are shown in the 

next section. The AE-network begins with the encoder part, using a Bidirectional long short-term memory 

(BiLSTM) layer as the first processing step, which allows to capture dependencies between time-steps in 

both temporal directions, making it useful for complex time-series. BiLSTM is followed by the ReLU 

activation layer. Afterwards, the AE continues with convolutional 1-D layers, constructed with ReLU 

activation and dropout layers to prevent overfitting. The latent space, the layer between encoder and 

decoder, is composed by a single fully-connected layer. After this, a symmetric structure is built for the 

decoder part, composed by transposed convolutional 1-D and BiLSTMs. At the output, a regression layer 

based on MSE loss function is utilized. Table 1 shows AE detailed parameters. 

 
Table 1: AE architecture. Source: the Author. 

Layer Architecture 

Input  
4 time-series features 

 
 

Encoder 
 

Layer 1: BiLSTM layer (16 hidden units, tanh and sigmoid (state/gate 
activation functions) 

Layer 2: ReLU 
Layer 3: Convolution 1-D layer (16 filters, filter size = 3, stride = 2) 

Layer 4: ReLU 
Layer 5: Dropout layer (Probability = 0.2) 

Layer 6: Convolution 1-D layer (32 filters, filter size = 3, stride = 2) 
Layer 7: ReLU 

Layer 8: Dropout layer (Probability = 0.2) 
Layer 9: Convolution 1-D layer (64 filters, filter size = 3, stride = 1) 

Layer 10: ReLU 
Layer 11: Dropout layer (Probability = 0.2) 

 
 

Latent 
space 
 

Layer 12: Fully-connected layer (Input size = 64, output size = 1) 
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Decoder 
 

Layer 13: Transposed Convolution 1-D layer (64 filters, filter size = 3, 
stride = 1) 

Layer 13: ReLU 
Layer 14: Dropout layer (Probability = 0.2) 

Layer 15: Transposed Convolution 1-D layer (32 filters, filter size = 3, 
stride = 2) 

Layer 16: ReLU 
Layer 17: Dropout layer (Probability = 0.2) 

Layer 18: Transposed Convolution 1-D layer (16 filters, filter size = 3, 
stride = 2) 

Layer 19: ReLU 
Layer 20: Dropout layer (Probability = 0.2) 

Layer 21: BiLSTM layer (16 hidden units, tanh and sigmoid 
(state/gate activation functions) 

Layer 22: ReLU 
Layer 23: Fully-connected`(Input size = 32, output size = 1) 

Layer 24: Regression layer (MSE loss) 
 
 

 

3.3.2 Input data to the AE 

The designed AE should use the vibration data directly in time-domain, as collected by the WTs 

CMS, which was detailed in Sec. 3.1.  

Data sequences in the input of the designed AE should correspond to the most meaningful time-

series features, in terms of carried information. This allows to represent well the whole time-series, which 

is composed by 16384 data points, since the CMS has 12.8 kHz of sampling frequency and 1.28-sec time 

window. For doing that, we execute a procedure of time-features ranking, according to their monotonicity. 

The ranking makes possible that only a few classical time domain features be enough to run our diagnosis. 

Therefore, the four top features of higher monotonicity are selected here, in order to better express the 

degradation in the time domain. The features with evaluated monotonicity were: mean, standard deviation, 

root mean square, shape factor, kurtosis, skewness, crest factor, impulse factor, peak value, signal-to-

noise ratio and total harmonic distortion. The ranking is executed for the diagnosed WT (herein called WT5)   

and is shown in Figure 6. Upon the features ranking, it is decided that the features input to the AE should 

be the crest factor, the clearance, the impulse factor and the skewness.  
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Figure 5: Example of a ranking of time-features (WT5). Source: the Author. 

 

3.3.3 Drivetrain failure diagnosis using the reconstruction error  

Given the chosen input variables, they should be reconstructed when passing through the trained 

AE network with minimum loss. Further, by executing AE training only on vibration data of healthy WT, the 

output of AE should indicate anomalous conditions if it is exposed to faulty input data. In a diagnosis tool, 

we must select reconstruction metrics that provide assurance of the failure detection. For this, we utilize a 

metric that captures the overall variation between healthy and faulty time-series, as well as a metric that 

captures the local differences in each sample. The former is the cumulative sum of the mean absolute 

errors (MAEs) over the last 5 samples (last 5 days) and the latter is the MAE itself within each sample (the 

daily value). The calculation of both metrics are shown in Eqs. 4 and 5: 

 

𝑐𝑀𝐴𝐸 =  ∑ 𝑀𝐴𝐸𝑖

𝑁

𝑖=𝑁−5

 
        
(4) 

          

         𝑀𝐴𝐸 =
1

𝑛
∑ ‖𝑥𝑗𝑖 − 𝑥′

𝑗𝑖‖
𝑛
𝑗=1  

        
(5) 

 
Where 𝑁 is the day of analysis, 𝑛 is the number of features in each sample, and 𝑥, 𝑥′ are the encoder inputs 

and outputs, respectively. Further, 𝑐𝑀𝐴𝐸 stands for cumulative 𝑀𝐴𝐸. Therefore, the anomaly will be 

detected from both a global and local time-series analysis. The thresholds of failure condition must be 

obtained by using the 𝑀𝐴𝐸𝑠 from the healthy data. As we will see in Sec. 4.2, the extreme 𝑀𝐴𝐸 and 𝑐𝑀𝐴𝐸 

values found for healthy time-series are employed to this. It is important to observe that the obtained 

thresholds are specific for each wind farm (WF) and should be calculated by training the AE in the healthy 

data from its WTs. Indeed, the failure limits will be established through the histograms of 𝑀𝐴𝐸𝑠 from healthy 

WTs, without recent failure occurrence (Jonas et al., 2022). 
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4. RESULTS OF THE DEVELOPED DIAGNOSIS TOOL 

It is worth to note the tool can be used with any accelerometer of the CMS, depending on what 

drivetrain component should be monitored. In the present paper, we will use the accelerometer of the output 

shaft as a proof-of-concept (PoC). This was the chosen accelerometer because it is related to the failure 

registered in one of the analyzed WTs. Indeed, it is known from operation logs that the fifth WT (herein 

called WT5), presented a failure in its output shaft bearing. Operator relates the need for bearing 

replacement at the measurement number 265 of the used WT5 vibration dataset.  

4.1 TRAINING THE AE USING HEALTHY DATA 

From the used database, it is known that WT3 and WT4 have not presented any drivetrain failures 

during the monitoring. Their data are employed for AE training on healthy data and consist in 2837 samples 

of 16384 data points. The dataset must be split in the training, validation and test datasets, where the latter 

will be used for comparison with the failure WT5 data. Thus, 70% of WT3 and WT4 data were reserved for 

train and validation (consisting in 1986 samples), and 30% (851) was reserved for testing. In this way, the 

AE could be tested in these 851 unseen healthy samples and compared to WT5 failure data. The evolution 

of training process is illustrated by the RMSE and the AE loss function, as illustrated in Figure 6. 

Figure 6: Training metrics of AE expressed in number of iterations (horizontal axis) and RMSE and 

loss function (vertical axis). Source: the Author. 

 

Note that these error metrics refer to the training phase in the entire healthy dataset and not refer 

to the failure diagnosis. Backpropagation is used to update the network weights, with Adam optimization 

algorithm running over the mini-batches. Training occurs in 200 epochs and the complete set of training 

parameters is described in Table 2. 
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Table 2: AE training main parameters. Source: the Author. 

 
Autoencoder Training Parameters 

Optimizer Adam 

Initial learn rate 0.001 

Learn rate drop factor 0.1 

Epsilon 1e-8 

Batch size 64 

Number of epochs 200 

4.2 FAILURE DIAGNOSIS 

To test the effectiveness of the designed AE in failure diagnosis and realize our PoC, we submit 

the data of WT5 output shaft bearing to the trained network. Results for the MAE are shown in Figure 7, 

compared with healthy data coming from the test set of WT3 and WT4. It can be seen that after the 200th 

measurement there is the persistence of reconstruction error peaks, with increasing values, indicating a 

possible anomaly. It is noteworthy that previous error peaks are not persistent or growing, consisting in 1-

day higher reconstruction errors, which does not characterize a reconstruction anomaly. A similar situation 

of peak persistence happens around the 300th measurement. However, the warning regions shown in 

Figure 7 are the result of pure visual inspection. Failure thresholds must be precise and carefully defined. 

In order to do this, we use the histograms for MAE and cMAE of healthy data, as shown in Figure 8. We 

establish the larger values of reconstruction error for the healthy data as failure thresholds. For MAE, we 

define inferior and superior attention limits, corresponding to the regions where the healthy data histograms 

present almost no occurrences. Indeed, the immense majority of healthy data locates below MAE < 0.6 and 

an even larger quantity of data points below MAE < 0.8. Ultimately, beyond the attention limits, the extreme 

value of healthy data is used as failure threshold at MAE=1.3. For the cMAE, which captures the global 

effect along 5 consecutive days, we use the same procedure to define attention limits between cMAE=1.4 

and cMAE=1.6, while the extreme cMAE=1.9 for healthy data is used as failure threshold. Further, cMAE 

should be analyzed in conjoint with the MAE to get a complete failure diagnosis. After the analysis to define 

failure limits in terms of reconstruction error metrics, one can utilize the defined thresholds to run the 

diagnosis. This is carried out in Figures 9 and 10, where the MAE and cMAE values for the analyzed WT5 

drivetrain are presented with the respective limits plotted in horizontal lines.  
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Figure 7: Comparison between reconstruction errors, showing WT5 potential failure regions. Source: the 
Author. 

 
 

 

  

                                

Figure 8: Distribution of occurrences for MAE and cMAE, healthy data. Source: the Author. 

 

 

In Figure 9, it is possible to note the presence of several measurement regions within the defined 

attention limits, which consist in potential failure regions. These occur between samples 84-92, 105-116, 

195-232 and 309-338. Note that the regions between 84-92 and 105-116 have smaller extension with large 

discrepancy of subsequent peaks. Regions between measurements 195-232 and 309-338, on the other 

hand, present a much larger extension and consistency of peaks, with smaller temporal distance between 
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them and less variation in their amplitude. Additionally, peaks in region 195-232 even present a clear 

increasing trend, probably associated with the rise of bearing failure. The trend line goes until surpassing 

the extreme failure threshold (MAE=1.35) at MAE=1.4. Based on this analysis, we could already suppose  

the measurement 232 as the first failure diagnosis. Nevertheless, we should corroborate this by analyzing 

the behavior of the cMAE. As shown in Figure 10, a large range of samples within cMAE attention limits 

are located over the measurements number 195 to 232, confirming the consistent presence of increased 

reconstruction errors in this region. Further, at measurement 232, the cMAE practically surpasses the 

extreme value found in the histogram of the right side of Figure 8. After a little intermittency, the cMAE 

values continues to rise and reaches once again the cMAE threshold at the sample number 274. In addition, 

observe that from measurements 190-232 and afterwards, there is a trend of increasing in the peak 

maximum values, attaining cMAE=2.9 in the measurement 381. Combining the results of MAE 

(representing local error effect) and cMAE (global error effect), we can state confidently that the 232th 

measurement is the first failure diagnosis, when the operator must cautiously begin the planning of 

maintenance activities. It is remarkable that in the 232th sample, both failure thresholds are reached and 

the growing in reconstruction errors have already been set for a long time (since day 190). The day number 

232 is the final result of our AE diagnosis tool. 

 

Figure 9: Failure diagnosis chart based on our autoencoder diagnosis tool, MAE analysis. Source: the 

Author. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Failure diagnosis chart based on our autoencoder diagnosis tool, cMAE analysis. Source: the 
Author. 
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4.3 COMPARISON WITH TRADITIONAL DIAGNOSTIC OF DRIVETRAIN FAILURES 

In order to compare the AE-diagnostic with the traditional diagnostic, we analyze WT5 dataset using 

FFT and envelope analysis. In the present work, the Hilbert transform is executed to obtain the signal 

envelope. It is well known that the signals of initial bearing degradation are usually encapsulated in high-

frequency resonances. The absolute value of Hilbert transform allows to obtain signal demodulation, 

revealing the bearing defect frequencies, which can be verified by further extracting the FFT of the 

envelope. More details can be found in, e.g., (Randall, 2014).  

The location of the bearing failure in WT5 output shaft was established in the inner race. The 

calculation for the defect frequency of this specific failure mode has been carried out in the usual way, 

 

𝐵𝑃𝐹𝐼 =
𝑛𝑓𝑠

2
{1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼} 

 

        (5) 

Where 𝐵𝑃𝐹𝐼 is the Ball Pass Frequency Inner race and 𝐷, 𝑑, 𝛼, 𝑛 and 𝑓𝑠 are the pitch diameter, 

ball diameter, contact angle between the ball and the cage, number of rolling elements, and the rotating 

speed of bearing (Hz), respectively. For the faulty WT5 bearing, this value was calculated in each rotational 

speed and monitored carefully. It is important to emphasize that the information of what type of failure is 

developing is not known a priori. Therefore, in a general case, all the bearing failure frequencies would 
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need to be monitored (and not only the BPFI), which makes the failure diagnosis even more difficult. This 

is another advantage of our AE diagnosis tool, which is independent of the failure type.  

In Figure 10, we can see the FFT of the envelope fat the beginning of WT5 operation, with the 

indicated BPFI amplitude. Executing the WT5 monitoring, it is observed that the failure is not evident until 

approximately the measurement of number 260. The FFT of the envelope for the faulty bearing is shown in 

Figure 11. As the designed AE indicated the beginning of failure at measurement of number 232, this 

represents a 28-days advance in drivetrain warning. 

Figure 11: FFT of WT5 envelope, measurement number 50. Source: the Author. 

 

Figure 12: FFT of WT5 envelope, measurement number 260. Source: the Author. 

 

5. CONCLUSIONS 

In the present paper, we have presented a diagnostic solution for WT drivetrains considering 

vibration CMS. Our tool is based on the design of a deep learning AE, composed by 24 layers, which 
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processes the signal directly in the time domain. This eliminates the need for tracking the specific frequency 

of drivetrain defects, sometimes hard to obtain and distinguish in the complex vibration environment of a 

WT.  Further, the procedure also issues warnings of possible drivetrain problems long before the traditional 

vibration analysis. This happens due to the ability of the deep AE to learn the non-linear and intricate 

relations within the time-series, providing means of identification of what is a healthy and what is an anomaly 

condition. To sum up, the herein presented tool achieves the following outcomes: 

 

• Identification of failures direct from time-series, not relying on frequency feature extraction 

and specific frequency defects. 

• Independence of traditional FFT-envelope monitoring of each sample. 

• Being an unsupervised learning method, the designed AE does not depend on the 

availability of previous failure data. This allows the use of the method since the start of WF 

operation. 

• Identification of failures much earlier (approximately 28-days before) than the traditional 

diagnosis methods. 

• Possibility of detecting failures in other components or sub-systems, by the re-training of 

the AE on corresponding data. 

 

Future works comprise the application of the developed tool in other WT databases. Also, the use 

of other CMSs, such as temperature monitoring, is envisaged, as well as the inclusion of several SCADA 

data as part of the diagnosis procedures. At last, we plan to continue our work over the prognostic of WT 

components, estimating the RUL with especially designed DL-networks. 
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