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ABSTRACT 

The main objective of this paper is to investigate some key issues related to the atmospheric 

stability for the development of wind power projects, aiming to contribute to increase the reliability 

of this source and its safe insertion into the energy matrix. It is also important to note that the 

techniques and methodologies to be described were conceived taking into consideration one main 

premise: using information and data that is already available for a standard wind power project. 

The methodology presented here consists of solving an inverse problem using the Bayesian 

Inference in order to estimate the Monin Obukhov’s length. The only input required for the 

aforementioned methodology is one mean horizontal wind speed time series – this requirement is 

highly cost-efficient and can be widely used. Therefore, the proposed solution will require a very 

low additional investment for the project developer and it will improve the quality of the wind 

resource assessment designed by the wind power project developers. 

Keywords: Wind Resource Assessment, Wind Profile Estimate, Atmospheric Stability, 

Monin Obukhov’s length, Bayesian Inference, Reliability and Risks Mitigation.  

INTRODUCTION 

The treatment of atmospheric stability conditions in the wind resource analysis of a region 

of interest in wind power projects is very rare. The available commercial computational programs 

that are widely used by the wind power project developers around the world are not ready to take 
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into proper account the influence of this phenomenon. These pieces of software usually have a 

modeling that require users to inform a priori parameters such as the Monin Obukhov’s length, 

which is not easily (or directly) obtained during wind measurement campaigns. 

This paper presents a Bayesian estimate methodology that expresses the conditions of 

atmospheric stability of a given region, considering a wind measurement campaign following the 

rule established by the Brazilian Energy Research Company (EPE) - a three year measurement 

campaign is mandatory for the registration of a wind power project in the energy auctions in Brazil. 

This methodology is validated through the use of measured horizontal wind speed time 

series from several different sites and heights. Very promising results are presented. 

THEORETICAL BACKGROUND 

The objective of this section is to present a brief theoretical review of the technique known 

as "Monte Carlo Markov Chain Integration" or MCMC (Monte Carlo Markov Chain) and its 

application to the study of atmospheric stability of a region of interest. 

The Bayesian Inference as well as any statistical inference is related to the process of 

drawing conclusions or making predictions based on limited information. A Bayesian approach to 

a real problem is a powerful tool for describing an inverse problem and there are many techniques 

for solving these problems. The more general ones are usually the minimization of an objective 

function of the difference between the measured and the calculated parameters from the 

mathematical model. 

For the solution of inverse problems within the Bayesian structure all variables included in 

the mathematical formulation of the problem from a physics point of view (direct problem) are 

modeled as random variables. Every Bayesian approach is based on the Bayes' theorem that 

shows the relationship between a conditional probability and its inverse. Mathematically, this can 

be stated as follows: 

  

πposterior(P)  =  π(P|Y)  =  
π(Y|P)π(P)

π(Y)
        (1) 

 



 

 

in which: P is the parameter; Y is the measurement;  πposterior(P) is the probability density a 

posteriori of P conditioned to Y; π(P)  is the probability density a priori of P; π(Y|P) is the probability 

density a posteriori of Y conditioned to P (likelihood function); and π(Y) is the marginal probability 

density of the measurements, which plays the role of a normalization constant. 

Monte Carlo Markov Chain  

The method known as Markov Chain Monte Carlo is the estimate parameter technique used 

in this study of atmospheric stability. The method that follows – as its name suggests – is part of 

an integration of a stochastic and random process. The MCMC technique is a good alternative to 

simulate priors without known statistical formulation. Although, this technique can have a very high 

computational demand. 

Markov chains can be defined as stochastic processes where the future depends only on 

the present, that is, it does not depend on the past. The formulation expressed by Eq. (2) 

mathematicises this concept: 

 

q(Pt= y|Pt= xt, Pt-1= xt-1, …, P0= x0 )= q(Pt+1= y|Pt= x)      (2) 
 

in which: q(Pt+1|Pt) represents the probabilistic distribution of the states of the chain. 

Some properties such as reversibility, ergodicity, homogeneity are associated with the cited 

stochastic process among others. Each property of the Markov chain is linked to a condition that 

must be satisfied. Some of these properties are used in our method. 

After defining the concept of a Markovian process, the next point to be discussed - and the 

key point of the MCMC algorithm - is the 'sampler' of the Markov chain. In the literature there are 

two traditional algorithms to perform such a function: the Gibbs sampler and the Metropolis-

Hastings algorithm - for this work the second of these two techniques will be utilized. 

The Metropolis-Hastings algorithm is a method to obtain a sequence of random samples 

from a probability distribution for which direct sampling is difficult. Such algorithm extracts samples 

of a candidate density, and then an acceptance-rejection method is used to generate samples for 

the chains of the parameters to be estimated. 



 

 

The Metropolis-Hastings’ implementation begins with the selection of proposals or 

candidates distribution q(P*|P(t)). The Markov Chain’s current state P(t) is utilized in order to create 

a new candidate state P*. A restrictive condition – the need of a reversible property – is applied as 

a filter for new candidates. The acceptance algorithm is formulated as: 

 

 πposterior(P
(t))q(P

*|P
(t))α(P

*|P
(t)) = πposterior(P

*)q(P
(t)|P*)    (3) 

 α(P
*|P

(t)) = min [1,
πposterior(P

*)q(P
(t)

|P
*

)

πposterior(P
(t))q(P

*
|P

(t)
)
]       (4) 

 

DIRECT PROBLEM 

The physical-mathematical model used for the estimate of the atmospheric stability 

conditions in this article is the logarithmic profile of the mean wind velocity in the lower layers of 

the atmosphere - region of interest for the calculation of the energy production of wind farms. 

In order to obtain an approximate profile of the mean velocity U of the flow near the earth's 

surface in function of the height z, the logarithmic profile updated with stability concept is modeled 

by Eq. (3). 

U = (
u*

κ
) [ln (

z

z0

) + ψ
M

]          (3) 

 

in which: κ is the Von Karman constant; u* is the friction velocity; z0 is the roughness; ψ
M

 is the 

functional that represents the effect of the stability of the atmosphere. 

Usually, in wind power projects, the functional ψ
M

  is assumed to be zero – it corresponds 

to neutral condition –, due to the practical difficulty of estimating it. It can be seen in Figure 1, 

different wind profiles due to the three different atmospheric stability conditions (stable, neutral, 

unstable) plotted on a semi log graph. 

 



 

 

 

Figure 1 - Different wind profiles due to the three main different atmospheric stability conditions. 

The functional ψ
M

 is the parameter to be estimated in this work. It depends on the height of 

the measurement and the Monin Obukhov’s length (L) – a variable that, even for simplified 

representations, is not very feasible to be directly obtained. Equation (4) shows a simplified 

representation of the Monin Obukhov’s length [2], considering the similarity of the velocity and 

temperature profiles in the statistically stable atmospheric condition. 

L =̃ 
u*θ

̅∆U̅̅ ̅

k g ∆θ̅
            (4) 

 

in which: g is the acceleration of gravity; and θ̅ is the average temperature of the measurement 

height.  

Thus, the difficulty of determining the Monin Obukhov’s length a priori defined the inverse 

problem of this work. That is, the Monin Obukhov’s length (L) is obtained from the Bayesian 

inference of the functional ψ
M

 treated as a parameter and estimated for the height of the 

anemometer used. 

Therefore, the proposal that will be presented is to estimate, via MCMC, a probabilistic 

distribution of ψ
M

, using information from the measured time series of average horizontal wind 

speed available in a standard measurement campaign. Other parameters are simultaneously 

estimated in such process (u*, κ e  z0). 



 

 

After estimating all parameters of interest, the Businger (1971) formulation [3] is used to 

recover a value that represents the Monin Obukhov’s length. This step is solved numerically via 

Newton-Rapson – for the unstable case. The Eqs. (5), (6) and (7) express the ψ
M

as a function of 

z, z0 and L. 

ψ
M

 = -4.7 (
z

L
-

z0

L
) , se (

z

L
> 0)        (5) 

 

ψ
M

 = 0, se (
z

L
= 0)          (6) 

 

ψ
M

 = 2 ln (
1+x

1+x0
) +ln (

1+x2

1+x0
2) -2 arctan(x) + 2 arctan(x0), se (

z

L
< 0)   (7) 

 

where: 

x = [1- (15
z

L
)]

1
4⁄

           (8) 

x0 = [1- (15
z0

L
)]

1
4⁄

           (9) 

 

Finally, as anticipated, the relationship between stability and instability of a profile is 

quantified by the magnitude of the Monin Obukhov’s length. There are some references in the 

literature that express the qualitative classification of the possible values of L. Table 1 is one 

example of such classification. 

Table 1 – Classification of the Monin Obukhov’s length. 

Range of Monin Obukhov’s length Classification 
|L|>1000 Neutral 

200 > L >1000 Stable 

0 > L >200 Very Stable 

0 > L >-200 Very Unstable 

-200 > L >-1000 Unstable 

Note: L is not defined for the zero value 

 

METHODOLOGY 

MatLab® was the computational tool in which the MCMC code was developed. The wind 

profile estimate algorithm’s inputs is one .csv file of horizontal mean wind speed time series 



 

 

The model’s parameters calibration required numerous numerical experiments which used 

the posterior convergence, the acceptance rate, the chain quality and the parameters estimate (u*, 

κ, z0, ψ
M

) as the calibration metric. The Monte Carlo’s computational demand was significantly 

reduced by the fact that the direct problem’s model was an algebraic equation. 

Figure 2 shows one well calibrated estimate case to illustrate the aforementioned successful 

code calibration work. The acceptance rate is close to 30 % and this indicates the estimate quality, 

as shown in Figure 2 (b). Figure 2 (a) shows that convergence and ergodicity were met in u* Markov 

chain – all chains respected those rules and Figure 2 is merely illustrative – and figure 2 (c) shows 

the output statics quality. 

 

 
Figure 2: Calibrated estimate case (only u* results are shown) 

More concise results of this calibrated estimate case are presented in Table 2: 

Table 2 – Classification of the length of Monin Obukhov. 

Parameter Average Standard Deviation Confidence Interval 

u* 0.67 m/s 0.03 m/s 0.60 m/s – 0.73 m/s 

κ 0.40 0.02 0.37 – 0.44 

z0 0.35 m 0.02 m 0.32 m – 0.38 m 

ψM -0.51 0.15 -0.80 – -0.22  

 



 

 

All average values are coherent with their magnitude orders. Thus, a good calibration can 

be assumed. The average Von Karman constant estimate (κ) – the most well-known prior 

parameter – is in accordance with 0.41 found in important fluid mechanics literature [1]. 

RESULTS 

Several results showing the efficiency of the developed methodology are illustrated below. 

On Figures 3 to 5 wind profile estimates from different met masts – located in different sites and 

climatologies – and input time series are shown. 

 
Figure 3: Wind profile estimates (Met Mast 1) 

 
Figure 4: Wind profile estimates (Met Mast 2) 



 

 

 
Figure 5: Wind profile estimates (Met Mast 3 & Met Mast 4) 

CONCLUSION 

Considering the results obtained during the long process of experimentation and validation 

of the method described above, we have a fairly strong reason to believe that this method is able 

to competently provide an accurate wind profile estimate and also a cost efficient atmospheric 

stability assessment.  

Regarding the graphs presented – they represent only a small sample of the entire data 

examined –, one can see that the distance between the estimated curves and the measured data 

was insignificant for estimates with sensors above 60 m of height. 

Deeper studies are being carried out by our team and improvements in accuracy are being 

actively pursued so that lower sensor heights can be successfully used in a very near future to 

estimate accurate wind profiles – this feature will certainly help prospectors to evaluate wind 

resource without the need of high investments. 
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